1785

The University of Georgia

Department of Computer Science

Brief Course Description
(50-words or less)

Extended Course Description /
Comments

Pre-Requisites and/or Co-Requisites

Approved Textbooks
(If more than one is listed, the textbook
used is up to the instructor’s discretion)

Specific Learning Outcomes
(Performance Indicators)

Course Information Sheet

CSCI 1301

Introduction to Computing and Programming

Algorithms, programs, and computing systems. Fundamental techniques of
program development and supportive software tools. Programming projects
and applications in a structured computer language.

This course is a rigorous introduction to problem solving using fundamental
programming techniques: variables, operators, expressions, decision
statements, loops, nested statements, arrays, methods, objects, classes, inputs,
and outputs. This course includes programming projects incorporating
algorithm design and implementation with a structured computer language
and hands-on experience creating, testing, and debugging software. This
course is typically the first major-related course taken by computer science
majors or anyone interested in learning how to program.

MATH 1113
PreCalculus

Author(s): Walter Savitch and Frank M. Carrano

Title: Java: An Introduction to Problem Solving and Programming
Edition: 5th Edition

ISBN-13: 978-0136072256

Author(s): Walter Savitch

Title: Java: An Introduction to Problem Solving and Programming
Edition: 6t Edition

ISBN-13: 978-0132162708

This course presents fundamental programming topics in a structured
programming language. At the end of the semester, all students will be able to
do the following:

1. Apply knowledge of compiling, running, testing, and debugging
programs.

2. Design and implement algorithms to solve problems.

3. Write programs with a structured programming language that utilize
variables, operators, expressions, decision statements, loops, nested
statements, arrays, methods, objects, classes, inputs, and outputs to
solve problems.

4. Write the output of a program by tracing through its source code.

Use an integrated development environment for programming.

6. Generate program documentation.

vt



Relationship Between Student
Outcomes and Learning Outcomes

Student Outcomes

Major Topics Covered
(Approximate Course Hours)

Student Outcomes
a b C d e f g h i j k
1 . . . .
Sl : I
§ § 4 °
8 S 5 L] [ ) [ ]
6 ° °
a. An ability to apply knowledge of computing and mathematics
appropriate to the discipline.
b. An ability to analyze a problem, and identify and define the computing
requirements appropriate to its solution.
c. An ability to design, implement, and evaluate a computer-based
system, process, component, or program to meet desired needs.
d. An ability to function effectively on teams to accomplish a common
goal.
e. Anunderstanding of professional, ethical, legal, security and social
issues and responsibilities.
f.  An ability to communicate effectively with a range of audiences.
g. An ability to analyze the local and global impact of computing on
individuals, organizations, and society.
h. Recognition of the need for and an ability to engage in continuing

professional development.

An ability to use current techniques, skills, and tools necessary for
computing practice.

An ability to apply mathematical foundations, algorithmic principles,
and computer science theory in the modeling and design of computer-
based systems in a way that demonstrates comprehension of the

tradeoffs involved in design choices.
k. An ability to apply design and development principles in the
construction of software systems of varying complexity.

Hardware/Software Basics (1-hour)

Algorithms (0.5-hours)

Compiling and Running Programs (0.5-hours)
Basic Input and Output (0.5-hours)

Integrated Development Environment (0.25-hours)
Variables and Constants (0.5-hours)

Data types (0.5-hours)

Assignment Statements (1.5-hours)

Operators (1.5-hours)

Expressions (2-hours)

Modular Arithmetic (0.5-hours)

Math functions (0.5-hours)

Strings (1-hour)

If Statements (3-hours)

Switch Statements (0.5-hours)

Enumerations (0.5-hours)

Programming Style and Documentation (1-hour)
Loops (3.5-hours)



Assessment Plan for this Course

How Data is Used to Assess Program
Outcomes

Course Master

Course History

Scope and Block Statements (0.5-hours)
Assertion Checks (0.25-hours)

Program Tracing, Testing, and Debugging (2-hours)
Methods (2-hours)

Classes (2-hours)

Objects (2-hours)

Constructors (0.5-hours)

Static Variables and Methods (0.5-hours)
Overloading (0.25-hours)

Packages (0.25-hours)

Information Hiding and Encapsulation (1-hour)
Public and Private Modifiers (0.5-hours)

Arrays (3-hours)

Sequential Search of Arrays (0.25-hours)
Selection and Bubble Sort of Arrays (0.75-hours)

The course instructor takes the results of exam questions and a
sampling of programming assignments corresponding to course
outcomes, and reports these results to the ABET committee. If
necessary, the instructor also writes a recommendation to the ABET
committee for better achieving the course outcomes the next time the
course is offered.

Each course Learning Outcome, listed above, directly supports one or

more of the Program Outcomes, as is listed in "Relationships between

Program Outcomes and Learning Outcomes". For CSCI 1301, Program
Outcomes (a), (b), (c), (f), (i), and (k) are supported.



